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ABSTRACT

A model-based diagnostic reasoning system makes use of a design model of the structure and
behavior of a circuit to diagnose faults within the circuit. In this volume of the FY91 final report
for MOIE Project 7020, we describe the Generic Model-based Diagnostic System (GMODS),
which can use VHSIC Hardware Description Language (VHDL) models to diagnose single and
multiple faults within digital sequential circuits. This volume describes the overall GMODS
approach, contrasts the capabilities and processing performance of two GMODS diagnostic
algorithms (a minimal envisionment algorithm and a conflict set algorithm), and concludes that the
conflict set algorithm is most appropriate for diagnosing sequential circuits.
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SECTION 1

INTRODUCTION

The task of achieving an adequate diagnostic capability within complex computer and
electronic systems has long been recognized as problematic. Typically, system diagn ‘stics are
developed to isolate a set of faults that has been listed within a fault isolation table. When the
system design changes, the costs associated with maintaining the fault isolation tables, redesigning
the Built-in Test (BIT) circuitry, and maintaining test program sets can be prohibitive. In addition,
since these diagnostic elements are designed to isolate only the faults listed in the dictionary, they
are usually unable to isolate multiple faults and other unanticipated faults. Evaluating the
effectiveness of a diagnostics design can alsoc be difficult; there is a lack of automated analysis
techniques available to system designers for evaluating fault tolerance or for assessing the extent to
which faults can be detected and uniquely diagnosed.

1.1 THE ROLE OF HARDWARE MODELING

These problems can be partly mitigated through the use of the VHSIC Hardware Description
Language (VHDL) and emerging analog and system-level description languages. In particular,
VHDL has been mandated as a DOD documentation requirement for military Application-specific
Integrated Circuits (ASICs) and DOD Standard Parts. These design description languages can
provide a standard medium for sharing candidate designs with the test organization, allowing test
developers to influence testability aspects of candidate designs at an early stage in the design
process.

Nonetheless, additional efforts are required to fully address the problems cited above.
Although VHDL and other standard descriptions are becoming available, there is a lack of
automated analysis techniques that can use these descriptions to evaluate fault tolerance and fault
detection and isolation coverage. Additionally, conventional fault simulation and test development
approaches still depend on enumerating stuck-at faults. Two "model-based" design and
diagnostics technologies which could help to address these remaining difficulties include
model-based diagnostic reasoning and behavioral-level fault simulation.

Model-based diagnostic reasoning techniques can improve fault isolation coverage. Rather
than isolating only fauits that were enumerated in advance, a mode'-based diagr~-  <*m uses
a design model to produce diagnostic explanations for the observe: >eha
Since any deviation from working behavior is considered a fault, 1
diagnose unanticipated faults and multiple faults. They are also »
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rather than having to create and maintain test program sets or rules, design models can be
exploited directly to support subsequent troubleshooting activities.

Since they use design models, model-based reasoning techniques can also be used during the
circuit design process to evaluate fault tolerance and fault isolation coverage. By identifying the
combinations of component faults that can contribute to an undesirable system outcome, a
model-based diagnostic system can perform an automated fault tree analysis directly from the
design model. By determining the extent to which fault isolation tests lead to unique diagnoses, it
can also evaluate the fault isolation coverage to be provided by the diagnostics elements of the
system design.

Behavioral-level fault simulation techniques can be used as a design tool to evaluate system
performance in the presence of faults and to evaluate fault detection coverage. Unlike
conventional fault simulation techniques which are generally limited to considering stuck-at faults
within gate-level hardware models, behavioral-level fault simulation techniques exploit the
descriptive capabilities of VHDL to incorporate additional fault classes (bridging faults, etc.) into a
fault simulation, and to allow circuit designers and test developers to define new fault classes
based on operational experience. By supporting additional fault classes in this manner, testability
approaches can be validated for a broader range of possible faults.

1.2 PROJECT OVERVIEW

The goal of MOIE Project 7020, Model-based Diagnostic Reasoning, is to develop both
model-based diagnostic reasoning and behavioral-level fault simulation techniques that can be used
in conjunction with VHDL. Our primary emphasis has been to develop a prototype of the Generic
Model-based Diagnostic System (GMODS) that is able to diagnose faults by reasoning about
discrepancies between the behavior of a faulted circuit and the behavior of a VHDL design model
of the circuit. Since any deviation from designed behavior is considered a fault, GMODS has the
potential to diagnose unanticipated faults as wcll as performance degradations indicative of an
impending fault. Since it reasons from VHDL design models, GMODS can also be used as a
design tool to evaluate fault isolation coverage.

In addition to GMODS, the project has also developed a behavioral-level fault simulation
technique called signa. faulting. This technique is based on envisioning the effects of likely
hardware failure mechanisms on sxgnals within a VHDL model. Each signal is divided into a
origi- ° *~imal and a "} 4l, possibly faulted signal, and a selectable fault transformation

-nat BV »ossibly faulted signals to model the effects of hardware failure
%) on the behavior of the signal. New classes of faults (such as
""»vs) can be easily introduced by defining new fault
‘ {




transformations. The signal faulting approach is documented within a separate volume of the
FY91 final report for Project 7020.

1.3 OBJECTIVES FOR GMODS

Our primary objective for GMODS has been to develop a general-purpose model-based
diagnostic system that can diagnose single and multipie faults at the board level within digital
circuits. In this paper, we will define a diagnosis to be an assertion that a set of zero or more
circuit components are in a faulted state. For a circuit that has n faultable components, where each
component is either working or faulted, at I=ast 2P possible diagnoses can potentially be asserted.
Given a set of observations from the faulted circuit, the overall task for GMODS is to search this
space of possible diagnoses in an efficient manner to determine which dizgnoses are consistent
with the observations, and to determine which diagnoses to report to the user.

To be able to diagnose faults within realistic digital circuit boards, the GMODS approach must
satisfy the following design goals:

o Fault coverage. GMODS must avoid making restrictive assumptions about the classes or
combinations of faults that can occur within the system. For example, it should not be
limited to diagnosing only single faults or diagnosing only fault modes envisioned in
advance.

» Plausibility. GMODS must avoid computing and reporting relatively improbable diagnoses
when more likely ones are consistent with the observations. Similarly, GMODS should
avoid reporting suspect components whose likely fault modes are inconsistent with the
observations.

« Efficiency. GMODS must be able to compute the set of plausible diagnoses with a
processing time that has a linear or polynomial relationship to the number and complexity of
circuit components.

+ Generality. GMODS must be able to handle realistic component models and circuit

topologies. In particular, it must also be able to reason about the behavior of sequential
circuit elements such as memory elements and feedback mechanisms,

1.4 CONTENTS OF THIS PAPER

This volume of the FY91 final report for Project 7020 will describe the GMODS approach,
with a focus on describing the GMODS reasoning mechanisms and on evaluating two diagnostic




reasoning algorithms that have been incorporated into GMODS. Section 2 will provide an
overview of previous efforts in model-based diagnostic reasoning, with an emphasis on the
previous diagnostic algorithms which provided a basis for the GMODS effort. Section 3 provides
an overview of the GMODS reasoning mecha.isms and the diagnostic algorithms incorporated into
GMODS. Section 4 then provides more detail on the GMODS representation language; section 5
discusses the GMODS temporal reasoning mechanisms to support diagnostic reasoning over time;
and section 6 describes the GMODS constraint propagator. Sections 7 and 8 provide detailed
descriptions of the GMODS diagnostic algorithms, and section 9 provides a comparison of the two
diagnostic algorithms. Finally, section 10 provides conclusions from the effort.




SECTION 2

PREVIOUS WORK

Model-based diagnostic reasoning has been the subject of extensive research over the past
decade {2, 5,6,7,8,9, 10, 11, 13, 15, 16, 17, 18]. Much of this work has been based on the
use of constraint propagation techniques [19] for building circuit and system models in a
declarative style intended to support qualitative simulation, hardware verification, design synthesis,
and diagnosis.

2.1 MODELING BEHAVIOR USING CONSTRAINTS

Within a constra:  formalism, a constraint is used to represent a local relationship between a
set of objects (such as variables or nodes) that is contained within a larger space of objects. For
example, the expression 9 * C =5 * (F - 32), which relates temperature expressed in degrees
Farenheit to temperature expressed in degrees Centigrade, could be expressed in terms of the
following constraints:

* (C, 9, Templ)
* (Temp2, 5, Templ)
+ (Temp2, 32, F)

The constraints and the variables that they relate can be used to form a constraint network.
The two primary types of elements in a constraint network are the variables and the constraints
which define relationships among the variables. Constraints serve two purposes: they express the
relationships between variables, and they can be used to generate values for each of the vanables.
In the above, if the value of C is known to be 10, the value of Templ can be computed, because if
C, Temp! and 9 are to satisfy the * relation, then the only value Templ can be assigned is 90.

A constraint propagation algorithm endeavors to assign values to all of the objects within the
space, such that all of the relationships expressed by the constraints are satisfied. Given a
constraint that expresses a relationship between n variables within a constraint network, the
constraint propagator may be asked to infer a value for one of the variables, where the n-1
variables are the antecedents of the inference and the nth variable is the consequent. Procedural
information can be associated with each type of constraint to enable the constraint propagator to
generate an assignment for the nth variable in a relation, based on the values of the other n-1
variables. For example, if the value of F is known in the constraint network above, we can use
one of the procedures associated with the constraint "+" to compute the value of Temp2.




Constraint formalisms can be used to model the behavior of digital electronic hardware in a
declarative format that is particularly well suited for diagnosis. Unlike a more procedural
representation of behavior, constraints can be used to infer values in both the intended direction of
information flow (from inputs to outputs) and in the opposite direction (from outputs to inputs).
This is often useful in diagnosis; when given an observed value for a circuit output, it is often
desirable to infer the possible input values that could explain the observed value. When using a
constraint formalism to model digital circuits that have an intended direction of information flow,
forward propagation refers to the process of constraint propagation in the intended direction.
Likewise, back propagation refers to the process of constraint propagation in the opposite
direction, from circuit outputs toward inputs.

2.2 USING CONSTRAINT MODELS TO SUPPORT DIAGNOSIS

An early approach for using constraint models to support diagnostic reasoning is described by
Davis [2]. His approach was to model a circuit both structurally, as a network of replaceable
components, and behaviorally, as a set of constraints associated with each component. Given a set
of inputs to the circuit, the structural model, and the constraints on each component, simulated
values for each circuit output are computed. If these values differ from the real outputs, the circuit
is believed to be faulty and a diagnostic algorithm is invoked. To isolate the fault, Davis proposed
a generate and test algorithm called constraint suspension: identify constraints within the model
that, if suspended, cause all of the discrepancies between observed and expected behavior to be
removed. Davis used this technique to isolate single faults within simple combinational circuits.

Another early model-based reasoning system, the Liquid Oxygen (LOX) Expert System
(LES), was developed to diagnose faults within the space shuttle LOX propellant loading system
[17]. LES is able to diagnose faults using a model of the steady-state behavior of over 1,000
analog and digital electromechanical components within the LOX loading system. Although it was
run successfully during several space shuttle launches, like Davis' approach it was limited to
diagnosing single faults, and the developers of LES were required to approximate the LOX loading
hardware as a combinational circuit.

2.3 APPROACHES FOR DIAGNOSING MULTIPLE FAULTS

A limitation of these early systems was their inability to diagnose multiple faults in an efficient
fashion. For example, the logical extension to LES to handle multiple faults would be to generate
and test all single and multiple fault suspects, which is computationally intractable. In 1987,
de Kleer and Williams published a description of their General Diagnostic Engine (GDE), which
incorporated a diagnostic algorithm that can diagnose both single and multiple faults without
generating and testing all possible diagnostic hypotheses {5].




The de Kleer/Williams approach relies on the principle of parsimony, which is to consier
only the simplest set of diagnostic hypotheses that satisfy all of the circuit observauuns. A
parsimonious set of diagnostic hypotheses is one that contains only hypotheses which cannot be
subsumed by any other hypothesis in the set. Any diagnostic hypothesis that is a superset of a
parsimonious hypothesis is also valid, and therefore, the parsimonious set of diagnostic hypothesis
provides a compact representation of the complete set of possible diagnostic conclusions.

The de Kleer/Williams algorithm computes the most parsimonious suspects directly using the
following steps:

« It propagates each observed input and output value through the model, based on
assumptions that each component is working.

« Each value generated during constraint propagation is labeled with a parsimonious set of
environments. An environment is a set of assumptions under which a value can be
generated.

« It finds environments (called conflict sets) that lead to contradictions between the behavior of
the circuit and that of the model. A contradiction occurs when two different values are
inferred for the same node. A conflict set is generated by computing the cross product! of
the labels of the contradicting values, and then eliminating non-parsimonious environments.

» It computes parsimonious diagnoses by taking successive cross products of the conflict sets.

To illustrate, consider the simple multiplier/adder circuit in figure 1, where outputs Y and Z
are both faulted. Based on the assumptions that the multiplier and adders are working, we can
forward propagate the input values A = 2 and B = 3 to infer the values X =6, Y = 10, and Z = 10.
Each inferred value is labeled with the supporting assumptions:

X =6 (MIl-working)
Y = 10 (M1-working, Al-working)
Z = 10 (M1-working, A2-working)

We can observe discrepancies between inferred and observed values at both Y and Z.
Consequently we can identify two conflict sets, (M1-working, Al-working) and (M1-working,
A2-working), which each represent a set of assumptions that leads to a contradiction. The conflict
sets can be alternatively expressed as (M1-faulted or Al-faulted) and (M1-faulted or A2-faulted).

1 For example, the cross product of the sets {{a}, {b,c}} and {{d, e}, {f}} is the set
{{a,d, e}, {a, f}. {b,c,d, e}, {b,c,f}}.




C=4 —
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Figure 1. A Simple Diagnostic Example

We can now compute the parsimonious diagnoses by converting the conflict sets into
disjunctive normal form using a cross product operation. This yields:

(M1-faulted) or
(Al-faulted, A2-faulted)

which tells us that M1 failing alone, or A1 and A2 failing together, can explain the observations.
We could also identify (M1-faulted, Al-faulted, A2-faulted) or (M1-faulted, A1-faulted) or
(M1-faulted, A2-faulted) as possible diagnoses. However, since each of these diagnoses can be
subsumed by one or more of the diagnoses reported above, they are less parsimonious.

In a second scenario where Y = 8 and Z = 6, we can generate a third conflict set at node X
using back propagation. First, we can back propagate from Y = 8 to compute X = 4 under the
assumption Al-working. We can then back propagate from Z = 6 to compute X = 2 under the
assumption A2-working. Since X cannot be equal to both 4 and 2 simultaneously, we identify a
third conflict set (A I-working, A2-working). Thus:

(M1 -faulted or A1-faulted) and
(M1-faulted or A2-faulted) and
(A1-faulted or A2-faulted),

which leads to the parsimonious diagnosis:

(M1-faulted, Al-faulted) or
(M1-faulted, A2-fauited) or
(A1-faulted, A2-faulted).




By finding conflict sets and converting them directly to parsimonious suspect sets, the
de Kleer/Williams algorithm is able to avoid having to generate and test all possible diagnostic
conclusions. Nonetheless, cross product operations are exponential, and the task of converting the
conflict sets into diagnoses in particular can require extensive processing time, especially for highly
interconnected circuits with limited observability.

In 1987, Hector Geffner and Judea Pearl proposed a diagnostic algorithm that employed an
alternative technique for managing the size of the search space [8]. Rather than applying the
principle of parsimony, they proposed using minimal cardinality to guide the diagnostic process
(i.e., they proposed to find all of the diagnoses that depend on the minimal number of faults).

The Geffner/Pearl algorithm uses a circuit model in which each component has two modes of
operation, a working mode and a default fault mode. The working mode includes a set of
constraints that define the working behavior of the component. The default fault mode simply
states that the outputs of a component are undefined for any combination of inputs. (We will use
the symbol "?" to refer to the set of possible values predicted using the default fault mode. Since
the ? can represent any possible value, it is frequently treated by the Geffner/Pearl algorithm as
being consistent with actual values.) In addition, the Geffner/Pearl algorithm can be easily
extended to use explicit fault modes that define fault behaviors for various components.

The effects of each observed input and output value are then propagated through the model,
using both the working and fault modes of operation for each component. Each value generated by
the constraint propagator is tagged with sets of justifications and weights. A justification contains
a set of antecedents and the mode of operation of the constraint used to generate the value. A
weight represents the minimal number of fault mode assumptions on which the value depends.
Since values at internal nodes can be derived from more than one direction (as a result of back
propagation), a different weight is computed for each direction, and the justifications are
partitioned by direction. By tagging each value in this manner, a dependency graph is constructed
of the justifications that support each of the predicted values.

After the constraint propagator has predicted the effects of all of the input and output values on
the model, diagnoses that explain the observed output values can then be generated. Generating a
diagnosis involves two steps:

« identifying predicted values consistent with the observed values, and

« tracing through the justifications for the consistent values that have the lowest weight, to
identify the component modes of operation which explain the observations.

For example, consider the diagnostic scenario shown in the circuit of figure 1. To compute a
diagnosis using the Geffner/Pearl approach, we first define two modes of operation for each



component, the working mode and the default fault mode. The constraint propagator first forward
propagates values through the model to generate predicted values for each intermediate node and
output node. By propagating from the inputs, two values are derived for X:

Value Direction  Weight Justifications
X=6 MIl-out 0 [Justification: A =2, B = 3, M1-working]
X=7? MI1-out i [Justification: A =2, B =3, M1-faulted]

Similarly, two values are derived for Y:

Value Direction  Weight Justifications
Y=10 Al-out 0 [Justification: C =4, X = 6, Al-working]
Y=? Al-out 1 [Justification: C =4, X =7, Al-working]

[Justification: C =4, X =6, Al-faulted]

Notice that a third possible justification for Y = ?, [Justification: C =4, X =?, Al-faulted], has
not been included because it is not minimal. In addition, a set of values, weights, and justifications
are computed for Z.

The second step is to back propagate values within the model to take account of the observed
values at the outputs. If the observed value of Z is 8, then a value of X =4 would be derived and
additional justifications would be generated for X = 7. At this stage, the justifications and weights
for values at X include:

X=6 M1l-out 0 [Justification: A =2,B =3, Ml-working)
X=7 Ml-out 1 [Justification: A =2, B =3, M1-faulted]
X=4 A2-inl 0 [Justification: D =4, Z = 8, A2-working]
X=7? A2-inl 1 [Justification: D =4, Z = 8, A2-faulted]

Finally, the value X = 4 is propagated to Y (generating a value Y = 8), and the weights for the
values at Y are updated. Afterward, the minimal justifications and weights for values at Y are:
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Y=10 Al-out 0 [Justification: C =4, X =6, Al-working]
Y=8 Al-out 1 [Justification: C =4, X =4, Al-working]
Y=? Al-out 2 [Justification: C=4, X =7, Al-working]

[Justification: C =4, X =6, Al-faulted]

To compute the weights for the values at Y, it is necessary to compute the weights contributed
by each antecedent. This involves visiting each antecedent node, determining the minimal weights
of consistent values inferred from each direction to the node, and then adding these weights
together.2 For example, Y = 8 has one justification with three antecedents: C =4, X =4, and
Al-working. The antecedents C = 4 and A 1-working both contribute a weight of zero. To
determine the weight contributed by the antecedent X = 4, node X must be visited. At node X,
two values are considered to be consistent with the antecedent X = 4, the value X = 4 derived from
the direction A2-inl, and the value X = ? derived from the direction M1-out. (The value X =7
derived from A2-inl is also consistent, but it is not considered because it has a higher weight than
the value X = 4 derived from the same direction.) The overall weight for the antecedent X = 4 is
computed by adding the weights for the minimal consistent values from each direction; X = 4 from
A2-inl has a weight of zero, X = ? from M1-out has a weight of one, and the antecedent X =4
contributes the sum, a weight of one, to the consequent value Y = 8.

- After constraint propagation is completed, the final step is to trace through the dependency
graph to identify the sets of assumptions that underlie the values consistent with the observations.
By examining node Y, we see that two values are consistent with the observations: Y = 8 and
Y = 7. However, in this case, we can ignore Y = ?, since it has a higher weight. By tracing the
justifications for Y = 8, we obtain the set of supporting assumptions (Al-working, A2-working,
M1-faulted), which is the minimal diagnosis for the circuit. Notice that as a result of back
propagation, the justification network for Y = 8 already includes support from Z = 8, and so the
diagnosis for Y = 8 represents the overall diagnosis for the circuit. In another scenario, if the
observed output values are Y = 0 and Z = 8, the values, justifications, and weights derived for Y
would be identical. By examining node Y, we see that the only value consistent with the
observations is Y = ?, and by tracing the justifications for Y = 7, we arrive at the diagnosis
(A 1-faulted, A2-faulted, M1-working).

Unlike generating diagnoses by taking cross products of conflict sets, Geffner and Pearl claim
that the process of tracing the network of justifications to produce a diagnosis is computationally

2 As noted in [8]. this algorithm for computing weights from the antecedents is somewhat more complex when
reconvergent fanout is present within the circuit model.
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linear (in the absence of reconvergent fanout). Their algorithm therefore represents an important
advance in model-based diagnostic reasoning. However, it still does not address all of the goals
listed earlier; in particular, it does not attempt to reason about behavior over time within sequential
circuits.
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SECTION 3

AN OVERVIEW OF GMODS

None of the previous approaches are able to satisfy all of our goals for a model-based
diagnostic system. In particular, none are able to diagnose sequential circuits, ones that contain
intemal memory elements or feedback mechanisms, and none make use of standard design
descriptions. To demonstrate that model-based diagnostic reasoning techniques could be applied to
standard design descriptions of digital sequential circuits, we have developed a GMODS prototype
that is able to convert VHDL design descriptions of digital sequential circuits into GMODS
constraint models, and can then diagnose faults by reasoning about the behavior of the circuit
models over successive clock intervals.

3.1 REASONING MECHANISMS

As shown in figure 2, GMODS consists of the following components: a circuit model defined
using the GMODS representation language; a constraint propagator that can propagate observed
values within the model based on various diagnostic assumptions; a reason maintenance system
that keeps track of the assumptions and time intervals which support each value inferred by the
constraint propagator; and a diagnostic problem solver that uses the constraint propagator and
reason maintenance system to produce single and multiple fault diagnoses. GMODS also includes
a translator that is able to convert VHDL descriptions into GMODS models in an automated
fashion.

A GMODS circuit model contains both structural and behavioral information. A circuit is
represented structurally by a network of components connected by idealized connectors called
nodes. A set of behavioral models, called modes of operation, is associated with each component.
The modes of operation can include a working mode, some number of explicit fault modes, and a
default fault mode in which the outputs are unpredictable for any combination of inputs. For each
mode of operation, the component's behavior is represented by a set of constraints, where each
constraint imposes a relationship among state variables that represent the component's inputs,
outputs, and internal state elements. The relationship defined by a constraint has two key aspects:
predicates define a method of computing values for each state variable referenced by the constraint,
and tremporal methods define the temporal extents of the values computed for each state variable.

The constraint propagator functions much like a simulator. Starting with values specitied at
the primary input nodes, the constraint propagator uses the constraint predicates to make local
inferences at each component, computing the component outputs based on the data at the inputs.
These inferences generate data at other state variables, making other inferences possible. In this
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way, data propagates through the model from the primary inputs to the primary outputs. Since
each local inference represents the behavior of a component based on values at its input ports, these
inferences taken as a whole represent a simulation of the circuit. Additionally, given observed
values at the primary outputs, the constraint propagator can back propagate these values to internal
nodes as necessary to support the diagnostic reasoning process.

OBSERVED CIRCUIT E)?Lti:"gfg:s
INPUTS AND
OUTPUTS Unanticipated faults

Multiple faults

DIAGNOSTIC PROBLEM SOLVER

REASON

CONSTRAINT MAINTENANCE

PROPAGATOR SYSTEM
(TARMS)

( GMODS REPRESENTATION \
LANGUAGE

Circuits are represented as networks
of components and connectors

Components impose constraints
\ on behavior of circuit )

Figure 2. An Overview of the GMODS Architecture

As the constraint propagator generates values for state variables within the model, GMODS
maintains a record of the sets of assumptions which support each value, the number of fault mode
assumptions (the weight), and the time intervals in which the value is valid under the indicated set
of assumptions. To perform this bookkeeping, we developed the Temporal Assumption-based
Reason Maintenance System (TARMS), which extends previous work in assumption-based truth
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maintenance [3] to include temporal reascning. Over time, the constraint propagator may infer
several values for a given state variable within the model. For each value, TARMS uses the
temporal method to compute the time intervals during which the value is supported, and then
computes the sets of supporting assumptions for each of these time intervals. The time intervals
and sets of supporting assumptions for each value are maintained within an assumption history.

new links in the dependency graph

/\

TEMPORAL
CONSTRAINT REASON
PROPAGATOR MAINTENANCE
SYSTEM

~_

which inference to make next

Figure 3. The Constraint Propagator and TARMS Work in Tandem

Under the control of the diagnostic problem solver, the constraint propagator works in tandem
with TARMS to produce a diagnosis (see figure 3 above). The constraint propagator propagates
all of the observed input and output values through the circuit model, generating values for state
variables in the model. While this activity takes place, TARMS constructs a dependency graph
(where the "nodes" in the graph represent datum values and the "arcs” represent justifications) and
maintains the sets of supporting assumptions for each datum. The constraint propagator indicates
how the graph should be constructed based on the forward and backward inferences made. Links
are made in the dependency graph between datum values at the antecedents to the datum value at
the consequent. If a datum can influence the explanation of another datum, then they are connected
through some path in the dependency graph.

The constraint propagator is relatively independent of temporal considerations; the temporal
methods associated with the constraints are used by TARMS to determine if and when a
conseqi- nt datum is valid. The constraint propagator, having computed the consequent, need
never revisit the inference. This allows the constraint propagator to perform the actual value
propagation only once, leaving it to TARMS to perform assumption propagation to update the
explanation.
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TARMS maintains the consistency of the information at each node in the dependency graph,
and suggests which inference the constraint propagator should perform next. When the
explanation for an antecedent datum changes, the explanation for the consequent changes using
assumption propagation techniques. If the consequent datum'’s explanation changes, its
consequents must also be updated. This happens in a recursive manner and is facilitated by
following the links in the dependency graph. Assumption propagation continues until either there
are no consequent justifications or the explanation of a consequent does not change.

3.2 DIAGNOSTIC ALGORITHMS

The GMODS diagnostic problem solver incorporates two diagnostic algorithms: a conflict set
algorithm similar to {5] and a minimal envisionment algorithm similar to [8]. By implementing
both algorithms using the same underlying reasoning mechanisms, we have been able to examine
the effectiveness and relative performance of these algorithms for reasoning over time within digital
sequential circuits.

The minimal envisionment algorithm was defined by combining the Geffner/Pearl algorithm
with the assumption tracking and temporal reasoning capabilities of TARMS. From the original
Geffner/Pearl algorithm, we have retained the concept of a minimal diagnosis, the technique of
pruning non-minimal justifications, and the technique of always propagating the effects of the
default fault mode. By implementing the algorithm using TARMS, we have added the capability to
label values with sets of assumptions and time intervals, which permits the algorithm to reason
over multiple clock intervals, to support incremental diagnostic reasoning, and to handle
reconvergent fanout and feedback topologies. In addition, since the sets of supporting
assumptions for each value are computed during constraint propagation, all computation needed to
derive the diagnosis takes place during propagation; unlike the original Geffner/Pearl algorithm, no
further tracing of the dependency graph is required to produce a diagnosis.

The conflict set algorithm is a variation of the original de Kleer/Williams algorithm that has
been implemented using TARMS to support reasoning over time within sequential circuits. When
running the conflict set algorithm, GMODS propagates only working mode behavior. When two
values at a state variable have sets of supports which overlap in time, a contradiction is detected
and the contradictory sets of supports are combined to produce a conflict set. The conflict sets are
subsequently used to generate the single fault diagnoses using an intersection operation, or to
produce a more complete parsimonious diagnosis using the original de Kleer/Williams approach.

Based on the selection of the diagnostic algorithm, the diagnostic problem solver makes
adjustments to the operation of the constraint propagator and TARMS. Constraint propagation
adjustments are made to control whether the default fault mode is propagated, and to prevent
unnecessary inferences that can otherwise be made using the default fault mode. Likewise,
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TARMS makes use of a different method for combining sets of supports; to support the conflict
algorithm, TARMS computes the most parsimonious sets of supports, and to support minimal
envisionment, TARMS computes the minimal sets of supports. These and other differences wili
be detailed in sections 7 to 9.
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SECTION 4

MODELING TO SUPPORT DIAGNOSIS

The GMODS representation consists of three primary elements: a structural representation of
the circuit as a network of components and idealized connectors called nodes, a representation of
the material and information flow over time within the circuit, and a description of the behavior of
each component. The GMODS representation of a digital sequential circuit can be defined in an
automated fashion from a corresponding VHDL description of the circuit.

4.1 REPRESENTING CIRCUIT STRUCTURE

The overall structure of a circuit is represented by a GMODS network. A network defines the
connectivity among a set of network components and the primary network inputs and outputs.
Within the network, a component can represent any replaceable circuit elements to which faults can
be attributed, including replaceable chips on a circuit board, wires and busses, logic gates, and so
forth. A component has a number of ports that represent interfaces through which materials or
information can flow, and it may have other attributes that represent internal state attributes,
parameters, and local variables.

Within the network, components are interconnected by attaching the appropriate component
ports to a common node. As in electronic circuit theory, a node represents an ideal connector.
Nodes are also used to represent the primary input and outputs of the network.

4.2 REPRESENTATION INFORMATION FLOW

State variables maintain the values that are inferred for nodes within a network and for internal
state attributes associated with various components. State variables also serve as an interface
between the model and TARMS; the assumptions, justifications, and time intervals under which a
value holds at a state variable are all maintained by TARMS. Each value inferred at a state variable
is called a datum.

A state variable may be assigned values of any data type that has been pre-defined within
GMODS. The allowable data types currently include integers, ranges, "?", and tri-value vectors.
A range defines a set of contiguous integer values. The ? stands for any value within the range of
all possible integer values. A tri-value vector is similar to a bit vector, except that each element can
take on the value 1,0, or 7. State variables that maintain tri-value vectors are shown in figure 4.
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Figure 4. A Component Attached to Nodes and State Variables

4.3 REPRESENTING BEHAVIOR

The behavior of each component is described in terms of collection of modes of operation,
including a mode of operation called working that describes the behavior of a component that is not
faulted, some number of explicit fault modes that characterize the behavior of a component when it
has become faulted in some known manner, and a default fault model called faulted that
characterizes the behavior of the component when it has become faulted in an arbitrary, unforeseen
manner. The default fault model simply states that the outputs of a component are undefined for
any combination of inputs.

For each mode of operation, the behavioral relationships between component inputs, internal
state elements, and outputs are represented by a set of conditional constraints. In GMODS, a
conditional constraint defines a relationship among state variables that is imposed by a particular
component. It indicates the component modes of operation for which it applies, and contains a
condition clause that specifies valuec for control signals that must be pres.nt before it can be
invoked. It also has a consequent clause that specifies the relationship between component input
ports, state attributes, and output ports that holds for the mode of operation when the condition
clause is satisfied.

Like other constraint formalisms, GMODS constraints can be inverted —not only can a
constraint be used to generate values along the causal path from inputs to outputs, but given an
observed output and assumptions about some of the inputs, it can also be used to infer the
remaining inputs. To support this forward and back propagation, GMODS constraints are
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described in terms of invertible behavioral primitives called predicates. A predicate can be used to
test the truthhood of a relationship among state variables, and it can also be used to generate values
for one or more of the state variables involved in a relationship.

For example, consider a 16-bit shifter which has two modes of operation, working and the
default fault mode. When the shifter is working, it can perform a no-shift, right-shift, or left-shift
operation, depending on the value at the function-select port. The constraint definition for the
right-shift operation is given by:

defconstraint SHIFTER-1 SHIFTER (function-select input output)
:applicable-modes (working)
:conditions (("equal® (integer function-select) '1))
:consequents ((*right-shift* (16-bit-tri-value-vector output)

(16-bit-tri-value-vector input)))

:causal-flow output
:delay O
‘temporal-method intersection

The predicate *right-shift* has been used to define the consequent of this constraint. This
predicate contains three procedures: one to test whether the *right-shift* relationship holds
between the state variables at the input and output nodes, one to generate a value for the output
state variable, and one to generate a value for the input state variable. For example, given a 16-bit
tri-value vector at the input state variable, a generator attached to the predicate can generate the
correct pattern of "Is" and "0s” for the output state variable. Another generator can generate the
correct pattern of "1s" and "0s" for the input state variable, except for the rightmost bit, which
must be assigned a value of "7".

This constraint also makes reference to the temporal method called intersection which
describes the temporal aspects of the constraint. For example, if the function-select and input state
variables for the constraint shown above were valid during (g, t4) and (ty, ts) respectively, the
intersection temporal method would determine that the output would be valid during (t1, t4). In
section 5, we will provide a more detailed discussion of how various temporal methods are used to
model the temporal behaviors of combinational and sequential devices.

4.4 DEFINING A GMODS MODEL

Defining a GMODS model for a circuit requires two principal stages: (a) to construct generic
models for the network and for each type of component in the network, and then (b) to use the
generic models to instantiate a GMODS network.
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In the first stage, the network and the various types of components are described by network
descriptors and component descriptors. A component descriptor defines the attributes of the
component type and specifies the modes of operation and constraints that will be associated with
each instance of the component. For example, the component descriptor for the shifter discussed
previously is defined by:

defcomponent SHIFTER
:slots ((function_select :type port)
(input type port)
(output :type port))
:modes-of-operation (working)

As constraints are then defined for each component mode of operation, they are attached to the
component model.

A network descriptor describes the types of components in the network, the connectivity
among instances of those components, and the primary inputs and outputs. Network connectivity
is defined by identifying the ports of component instances to be connected, while the primary
inputs and outputs are defined by identifying the ports of component instances that will serve as
primary inputs and outputs respectively. For digital circuits, the component descriptors, constraint
definitions, and network descriptor can be defined automatically by the VHDL-t0-GMODS
translator.

In the se.~nd stage, the generic component and network models are used to instantiate a
GMODS ci- . - model. GMODS first accesses the network descriptor to obtain a listing of the
componen pe instantiated, and then performs the following tasks for each component:

« The component descriptor that defines the specified component type is used to create a
component instance.

» Slot specifications accessed from the component descriptor are used to create the ports,
parameters, state attributes, and local variables to be associated with the component instance.

After the components in the system have been instantiated, they are connected into a network
using the connectivity specification from the network descriptor. A node is created for each
connection point and the specified component ports are connected to the node. For each
component, the modes of operation and constraints are accessed from the component descriptor,
instantiated, and attached to the component. References to each constraint are placed within all of
the referenced slots, and state variables are defined to maintain the data that will be generated by the
GMODS constraint propagator. Once this activity has been completed, the GMODS model is fully
instantiated and ready to support diagnosis.
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4.5 TRANSLATING VHDL MODELS TO GMODS

The GMODS network, component, and constraint descriptors can all be defined automatically
from comresponding VHDL descriptions. The following VHDL inputs are required to create a
GMODS model that can be fully instantiated:

» atop-level VHDL design entity and structural architecture that represents the overall circuit.
The interface description for this entity defines the primary circuit inputs and outputs, and
components in this structural architecture are assumed to correspond to replaceable
components in the circuit.

+ a VHDL design entity and dataflow architecture for each type of component referenced in the
structural model.

« equivalent VHDL and GMODS libraries of signal types and behavioral primitives.

The GMODS network model is created from the top-level VHDL design entity and structural
architecture. The GMODS component models are also created from the corresponding VHDL
models using a straightforward mapping. First, the interface description and port declarations of
the VHDL design entity are mapped directly into a GMODS component definition form, as shown
below:

entity SHIFTER is
port (function_select: in integer;
input: in bit_vector (15 downto 0);
output: inout bit_vector {15 downto 0);
end;

defcomponent SHIFTER
:slots ((function_select :type port)
(input type port)
(output type port))
:modes-of-operation (working)

The dataflow architecture is then used to construct sets of GMODS constraints. For
combinational components, this translation is also straightforward — each condition of a signal
assignment statement leads to another GMODS constraint. However, the behavioral primitives
used to define the signal assignment statements (which are usually implemented as VHDL
functions) must correspond to GMODS predicates; GMODS does not attempt to construct its
predicates automatically from VHDL. For example, consider the following VHDL dataflow
description for a 16-bit shifter:
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architecture dataflow of SHIFTER is

begin

output <= input when function_select = 00 else
r_shift (input)  when function_select = 01 eise
I_shift (input);

end;

This description gives rise to three GMODS constraints which define the identity operation, the
right shift operation, and the left shift operation respectively. The identity constraint is defined by:

defconstraint SHIFTER-0 SHIFTER (function-select input output)
:applicable-modes (working)
:conditions (("equal* (2-bit-tri-value-vector function-select) ‘00))
:consequents ((*equal® (16-bit-tri-value-vector output)

(16-bit-tri-value-vector input)))

:causal-flow output
:delay O
temporal-method intersection

where the both the equality used to define the condition (function_select = 00) and the equality
imposed by the signal assignment (output <= input) have been translated to the GMODS *equal*
predicate. Similarly, to define the constraints which model the right-shift and left-shift operations,
the r_shift and 1_shift functions must correspond to the GMODS *right-shift* and *left-shift*
predicates. The VHDL-to-GMODS translation process is described more fully in [15].
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SECTION 5

TEMPORAL REASON MAINTENANCE

Withi- a GMODS circuit model, a set of data is associated with each state variable. Each
datum in the set represents a value that was inferred by the constraint propagator using one of the
constraints attached to the state variable. These values will be inferred based on different sets of
diagnostic assumptions about the mode of operation of components in the model and different
combinations of values at the antecedents to the constraints.

5.1 TARMS

A set of supporting assumptions, or set of supports, is a set of assumptions under which a
value is valid. Since GMODS can derive many possible combinations of sets of supports for a
value, a mechanism is needed to keep track of the sets of supports under which each value is valid.
Additionally, data that are valid under particular sets of supports during one time interval may not
be valid during another, and it is necessary to keep track of the time intervals during which values
are valid under different sets of supports.

TARMS was developed to address these issues. It also assists the diagnostic problem solver
to avoid making needless inferences that cannot contribute to a diagnosis, and to make the most
useful inferences first. Overall, it performs four distinct functions:

* it generates the sets of supports for each value;

« it maintains a history of the time intervals in which each value is valid under different sets of
supports;

« it assists the diagnostic problem solver by maintaining only the best sets of supports (the
best sets of supports depend upon the algorithm in use, together with other considerations);
and

« it assists the constraint propagator to avoid unnecessary inferences.

To perform these functions, TARMS deriving and updates assumption histories for each
prediction about state variables. Assumption histories are an extension of Williams’ value
histories [20]. Value histories represent the behavior of a state variable over time as a contiguous,
non-overlapping sequence of interval-value pairs which hold under one set of supporting
assumptions. In contrast, an assumption history encodes a time-indexed chronology of different




sets of supports under which a value is found to be valid for a particular state variable. TARMS
maintains an assumption history for every variable-value combination derived during diagnostic
reasoning.

The responsibility for temporal reasoning also resides within TARMS. A traditional constraint
propagator generates values that are time independent, and TARMS uses temporal methods to
determine the time intervals in which each value is valid. As noted earlier, the GMODS
representation language facilitates this separation by differentiating between cause and effect
relations and temporal behavior.

In the remainder of this section, we will consider how assumption histories are used to
maintain a record of the time intervals in which values are valid under different sets of supports. In
the following sections, we will then discuss the process used by TARMS to generate sets of
supports under the two diagnostic algorithms, and we will then consider how the GMODS
diagnostic problem solver uses TARMS to generate a diagnosis in an efficient manner.

5.2 ASSUMPTION HISTORIES

In the course of producing a diagnosis, a set cf values will be inferred for each state variable
within the GMODS circuit model. Given an assumption and values at antecedent state variables, a
constraint is used to infer a value at a consequent state variable, when the constraint is one that is
applicable in the assumed mode of operation.

Each inference is represented by a justification. A justification contains a consequent value,
the sets of antecedents and the constraint that were used to infer the value, and the sets of supports
under which the inference is valid. Each antecedent and consequent value is represented by a
datum. A datum contains the value, the justifications that were used to infer the value, the
justifications that use the value as an antecedent, and the sets of supports under which the value is
valid. When the consequent datum is inferred, the set of antecedents is recorded within a
justification, and the justification is attached to the datum. Since different constraints can be used
to infer the datum at various points in the diagnostic reasoning process, any number of
justifications may be attached to a datum.

As the behavior of a circuit changes over time, the sets of supports that explain each datum
and justification may also change. An assumption history is used to keep track of which sets of
supports explain each datum or justification over time. As illustrated in figure 5, several values at a
state variable may be valid during a particular interval of time under different sets of supports, and
the sets of supports that explain a particular value may change over time. The pattems in figure 5
and subsequent figures correspond to various sets of supports. The patterns vary, since the sets of
supports may vary.
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Figure 5. Assumption Histories for Values Inferred at a State Variable

GMODS uses assumption histories in two distinct ways, to maintain the sets of supports for
each justification over time, and to maintain the best explanations for each datum. The best
explanations for a datum are generated from the assumption histories of each justification for the
datum. An assumption history for a justification is called a justification history and the assumption
history for a datum is called a datum history.

Each element of an assumption history is a time-tagged explanation called an occurrence.
Occurrences are used to capture the sets of supports that explain a justification during an interval of
time, and to maintain the best sets of supports for a datum (from a particular pathway) during an
interval of time. An occurrence has the following attributes:

+ Origin - The datum or justification of the occurrence.

 Explanation - The sets of supports that explain the datum or justification.

» Time-interval - The time interval during which the sets of supports explain the datum.

» Weight - The number of fault mode assumptions contained in any of the sets of supports.

An occurrence that is associated with a datum also records the set of all occurrences for the
same time interval which are associated with the justifications for the datum. This includes the
ones that were not considered “best”. Since any justification occurrence can become "best” at a
later stage in the diagnostic reasoning process, all occurrences are cached here for efficient access.

Each value derived for an individual state variable is represented in GMODS as a datum. A
datum has the following attributes:

» Value - A value inferred for a state variable.
« Justifications - A list of justifications that can be used to infer the value of the datum.
« Consequents - A list of justifications that include this datum as an antecedent.




» Assumption-history - A list of occurrences that support the datum at various intervals of
time, indexed by pathway.

Finally, each justification has the following attributes:

» Consequent - The datum that is justified.

* Antecedents - The antecedents used to infer the consequent datum, including a list of
antecedent datumn and the assumption used to infer the consequent.

* Informant - The constraint used to infer the consequent.

 Assumption-history - A list of occurrences that support the justification at various intervals
of time.

We will first consider how the assumption history for an individual justification is derived,
and we will then describe the procedures for deriving the assumption history for a datum from its
supporting justifications.

5.3 DERIVING THE ASSUMPTION HISTORY FOR A JUSTIFICATION
The justification history is derived using the following algorithm:
+ Determine the temporal method implied by the constraint, and derive the temporal intervals.

* For each resulting time interval, derive the sets of supports for that interval based on
antecedents at that interval, depending on the diagnostic algorithm in use. The antecedents
that are used to determine the time intervals for an assumption history may be different than
the antecedents used to derive the sets of supports.

» Make the assumption history concise by combining assumptions that are temporally adjacent
and have the same sets of supports. This minimizes the number of assumptions that need to
be maintained.

The temporal extent of occurrences in a justification history are determined by the temporal
extents of occurrences in the datum histories of the justification's antecedents and the temporal
method that is defined for the constraint. A temporal method describes the temporal behavior of a
consequent assumption history by expressing the temporal relationship between the antecedents
and the consequent of a justification, using Allen's temporal logic [1]. The central advantage of
this modelling technique is that it allows temporal behaviors to be specified in terms of a small
number of abstract rules. This methodology is particularly useful when diagnosing sequential
circuits because the various components in the circuit could have very different temporal behaviors.
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Temporal methods capture the similarities in temporal behavior that exist across digital devices,
thus leading to concise circuit models and effective inference procedures.

Additionally, the use of temporal methods to describe temporal behavior is natural, given the
separation within GMODS of value propagation and propagation of temporal information. The
number of temporal methods that have been required to describe temporal behaviors within the
GMODS models up to this point have been few; we have identified five distinct temporal methods
to describe the temporal behavior of simple digital components: intersection, persistence, events,
transitions, and delay.? We envision a small, fixed number of temporal methods that will be
needed to describe the behavior of other digital circuits, and additional temporal methods may be
added to the system as necessary.
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Figure 6. A Combinational Device

For components with combinational behaviors, such as the ALU in figure 6, the time intervals
in which a justification is valid are computed by taking the intersection of the time intervals of all
the antecedents. An occurrence is created for each time interval, and the best sets of supports for
the occurrence are based on the best sets of supports for the corresponding occurrences within the
assumption histories of each of the antecedents.

For example, assume that the ALU input A has a value of 2 during the intervals (tg, t4) and
(5, t6) and input B has a value of 6 during (t1, t3) and (t5, t7). We will also assume that the device
has been selected for addition by C = 1 during (t, t3) and (ts, t6), as shown in figure 7. The
intersection method produces a new assumption history for the 8 that has been derived with
temporal intervals which are valid in the intersection of the antecedents’ intervals, namely (t2, t3)
and (t5_te).

3 Qur treatment of persistence has been influenced by Hamscher's work in the use of temporal reasoning within
TINT[10].
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Figure 7. Creating an Assumption History using Intersection

Intersection cannot be used to derive the assumption history of a datum that persists within a
memory device. Since a memory device, such as a latch or a register, has an intemnal state that
persists, a datum may be valid within the interal memory of such a device when its antecedents
are no longer valid. Three temporal methods can be used to describe the temporal behavior of a
simple component with memory, such as the latch in figure 8. These methods allow GMODS to
reason both forward and backward through time.

LE LATCH

Figure 8. A Device with Memory

The first temporal method used to describe the behavior of a device with memory is the event
method. This method detects the event which causes a state transition. For example, it is used to
determine when a transition from a load-enabled state to a non-load-enabled state occurs. This
method recognizes the point in time when the control signal transitions, and is generally used to
create an assumption history for a special transition variable. The transition variable is a local
variable that maintains the current state of the device. Assumptions for the transition variable's
assumption history are derived from the sets of supports from both the load enable and non-load
enable value of the control signal.




The first and second temporal methods are closely related. The second method is a
transition method, which describes the behavior of a device immediately before or after an
event. This method describes the relationship between the input and the internal memory of a
memory device. The transition temporal method derives the temporal extent of a value in the
internal memory of a device from its input during the first temporal interval after the device has
transitioned from load-enabled to non-load-enabled. The extent of this interval is the smallest
defined interval in the temporal logic. In a similar fashion, the temporal extent of the input of the
device can be inferred from its internal memory one interval earlier than the transition.

The third method is the persistence method. Memory devices are typically controlled by
control signals, such as the load-enable signal (LE) in figure 8. The control signal determines the
interval during which the device's memory can be altered by inputs to the device. The persistence
method computes the temporal extent of an occurrence for a value at the device's memory based on
the extent of the control signal only. However, the sets of supports are derived from the sets of
supports for the control signal and those for the previous memory value.

5.4 EXAMPLE

To illustrate the use of these temporal methods, consider a scenario where a 6 is observed at
the input of the latch during the time interval (tg, t;), and the latch is load-enabled (LE = 1). The 6
is propagated to the latch-memory, and TARMS creates an occurrence on the history of the
latch-memory that is valid during (to, t1). During (tj, ts), LE = 0, causing the latch to no longer be
load-enabled. TARMS uses the event method to create an occurrence on the history of the
transition variable at time t;. This occurrence indicates that the latch has transitioned from a
load-enabled to a non-load-enabled state at t;. Since a transition has occurred and GMODS is
forward propagating, GMODS infers that the state of latch-memory immediately after the transition
is the same as immediately before the transition. Using the transition method, an occurrence is
created on the history of the latch-memory with a time interval of (t1, t2).

The assumption history of the latch-memory now intersects temporally with the history of
(LE = 0), so the conditions for persistence are met. TARMS uses the persistence method to extend
the occurrence on the history of the latch-memory from (ty, t2) to (t1, t4), which corresponds to the
entire interval where the latch is not load-enabled. The latch continually outputs the contents of its
memory, so the datum O = 6 at the output of the latch contains a history which is valid from (to, t)
with the sets of supports under which the 6 was loaded, and from (t{, t4) with the sets of supports
under which the value persists. This process is illustrated in figure 9.

The temporal methods work in a similar manner when reasoning backward in time. For
example, suppose that a 6 is observed at the latch output during (t2, t3). Since the latch continually
outputs the contents of its internal memory, a 6 can be inferred for latch-memory during (t;, t3).
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Figure 9. Reasoning Forward in a Device with Memnory

As above, the latch is load-enabled during (tg, t1) and not load-enabled during (ty, t4). The
conditions for persistence are met, so persistence method is used to extend the occurrence on the
history of the latch-memory from (t, t3) to (1, t4), which corresponds to the interval when the
latch is not load-enabled. Using the event method, a transition 1s detected at t1, so an occurrence is
created on the transition variable. This triggers the creation of the datum I = 6 with an occurrence
for the time interval (tg, t;). This process is illustrated in figure 10.
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Figure 10. Reasoning Backward in a Device with Memory

5.5 DERIVING THE ASSUMPTION HISTORY FOR A DATUM

We will now describe how a datum history is derived trom the justification histories that
support the datum. A datum history is created or updated whenever the new justification history is




derived, or the existing justification history has been updated. Separate datum histories are
maintained for each pathway to the datum. (Although it is not necessary to maintain histories for
each pathway when the conflict set algorithm is used, since GMODS is currently being used as a
testbed to evaluate both algorithms, we will store information in this more general way.)

When a datum is supported by a single justification, the justification history is used for the
datum history. However, when a datum receives a new justification, or the assumption history of
one of its justifications is updated, then the history of the datum must be updated. The process of
updating the datum history is discussed below.4

The first step is to create the maximal number of occurrences necessary for the updated datum
history. Seven temporal relationships defined by Allen [1] are used in this process: starts,
finishes, during, overlaps, meets, before, and equal. As an example, the overlaps relationship is
shown in figure 11. Given two occurrences, one from the current datum history and one from the
new justification history, these relations indicate that up to three new occurrences with certain time
intervals are needed in the updated datum history to capture the evidence from both occurrences.
To update the entire history, it is necessary to determine which of these relationships hold for
successive pairs of the current datum history and the new justification history.

Overlaps
current history i ] — T
new justification [ 1 yields

history

Figure 11. The Overlaps Temporal Relationship between Occurrences

The second step is to assign sets of supports to each occurrence derived for the new datum
history. For each new occurrence, two occurrences, one from the current datum history and one
from the new justification history, are selected based on the time interval of the new occurrence. If
they both are rated “best”, then the new occurrence includes the sets of supports from both
occurrences. If not, then the best sets of supports from each occurrence are selected.

The third step merges occurrences that have the same sets of supports to form a concise
history. If two adjacent occurrences have the same sets of supports, the occurrences can be

4 This description of the process has been simplified for the sake of presentation. Obviously, more efficient
algorithms are possible.
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merged to form a single occurrence in the interval derived from the begin time of the first
occurrence and the end time of the second occurrence. This step results in a more concise history.

Once a datum history is updated, its effects must be propagated to any consequent of that
datum. These effects are propagated by visiting each of the consequent's justifications of that
datum. A consequent's justification is a justification in which the updated datum is used as an
antecedent. In this manner, these effects are recursively propagated throughout the dependency
graph in TARMS, updating all relevant data assumption histories. This process is called
assumption propagation. It can be streamlined by only updating the relevant time intervals of the
histories, since the intervals that have not changed do not need to be updated. Modifications to a
datum'’s explanation can therefore be propagated to the appropriate data without reder. 'w...- any
inferences.




SECTION 6

CONSTRAINT PROPAGATION

The constraint propagator is responsible for propagating values through a GMODS model
trom inputs to outputs, and among outputs, to support the diagnostic reasoning process. It is
made up of two subsystems: the predicate evaluator and the consumer scheduler. The consumer
scheduler decides which inference will be made next by the constraint propagator. The constraint
propagator then uses the predicate evaluator to make the inference.

6.1 THE PREDICATE EVALUATOR

The predicate evaluator is responsible for evaluating the individual predicates of a conditional
constraint. A predicate can be evaluated in one of two modes: generate or test. If the predicate is
ground (all state variables have values), then it is evaluated in test mode; the predicate evaluator
determines whether the relationship holds among the values. Otherwise, the predicate is evaluated
in generate mode; one of the state variables is left unspecified, and the predicate evaluator generates
a value for it based on the given values. Predicates have various generators associated with them
to do this. Generators are procedural information that can be used by the predicate evaluator to
produce the value(s).

The predicate evaluator always retumn a boolean, *true* or *false*, and a binding (the value
generated for the consequent state variable). In generate mode, *true* and some value is returned
(or *false* and nil if a value could not be generated, e.g., divide by 0). In test mode, *true* or
*false* and nil is retuned. Depending upon the mode, both the boolean and the binding might be
used.

For example, a constraint used to express the behavior of the ALU in figure 6, when it is
performing addition, is:

(defconstraint alu-0 alu (alu-field alu-output input-a input-b)

:applicable-mode-of-operation (working)

:conditions (("equal® (type-integer alu-tield) 0))

:consequents ({*sum-equal* (type-bit-vector alu-output)
(type-bit-vector input-a)
(type-bit-vector input-b)))

:causal-flow alu-output

:temporal-method intersection)
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The predicates involved in this constraint are *equal* and *sum-equal*. The constraint is enforced
only if the alu-field selects addition, when the predicate (*equal* (type-integer alu-field) 0) is true.
The predicate evaluator is used to test whether the *equal* condition is true. If it is, then the
constraint is used to make the *sum-equal* inference, to generate a new value for the appropriate
state variable.

6.2 CONSUMERS

In the course of producing a diagnosis, there are typically a great number of possible
inferences that can be made but that will not contribute to the diagnosis. To avoid making
unnecessary inferences, we have developed a variation of the consumer architecture scheme
described by de Kleer {4] to control the constraint propagator.

In a consumer architecture, all inferences that the constraint propagator can make are
represented by consumers. A consumer represents a potential or pending inference. It is
comprised of a set of antecedent data, a constraint, a consequent state variable, and an assumption
history. Consumers are derived and then scheduled to be processed for the efficient performance
of the diagnostic problem solver. When a consumer is processed, the constraint consequent is
evaluated by the predicate evaluator to produce a datum for the consequent state variable, and the
consumer is used to construct the justification for the new datum.

When a new datum is inferred for a state variable, many additional consumers can potentially
be created. Each new consumer will consist of one of the constraints associated with the state
variable, the new datum, and one of the datums already derived at each of the other antecedent

| nodes. When a consumer is created, an assumption history is created for the consumer using the
assumption histories of the antecedents and the temporal method of the constraint. When
assumption propagation takes place, it updates the assumption histories of consumers.

6.3 USING CONSUMERS TO AVOID USELESS INFERENCES

The consumer architecture guarantees that an inference will take place exactly once for each
unique set of antecedents. In addition, since consumers are the only way to express potential
inferences, we can sometimes avoid useless inferences by never creating certain consumers, and
we can postpone processing other consumers until they will lead to a worthwhile inference. Some
of the types of redundant or useless inferences avoided by using the consumer architecture are
listed below:

» Inferring a consequent over and over again because the antecedents are valid at different time
intervals. A consumer expresses the inference without respect to time. If an antecedent
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datum is found to be valid during a new time interval, the explanation for the consequent
datum will be updated using assumption propagation, but no new consumer will be created
and no additional constraint propagation will take place.

+ Inferring a consequent if the same antecedent is derived from another reasoning pathway. If
the datum that was previously derived is derived again from another pathway, no new
consumers are created. All possible consumers for that datum were created when the datum
was first derived. Of course, deriving the datum from the new pathway will invoke
assumption propagation, which will propagate evidence to any consequents of the datum.
This may cause the consumer scheduler to enable the previously generated consumers.

» Processing a conditional constraint whose condition is not valid. When consumers are
being created, the condition of the constraint is tested by the predicate evaluator. If the
condition is true, a consumer will be created for that set of antecedent data and the
constraint. Otherwise, no consumer will be created. If a datum value is generated that
would make the condition true, a consumer will be created at that time.

« Inferring a consequent that would not have any assumption history. A consumer is not
processed if the temporal method specified for the constraint would yield no time intervals
for the assumption history. For example, if a constraint used the intersection temporal
method, then the time intervals in the assumption histories of all of the antecedents must
intersect, otherwise the consequent would not be valid during any time interval.

-+ Handling contradictions. As constraint propagation takes place, contradictions may be
discovered by the diagnostic problem solver. For instance, when using the minimal
envisionment algorithm, a contradiction could occur if the sets of supports for the
antecedents are inconsistent as a result of reconvergent fanout. Two divergent paths could
converge downstream and be based on contradictory assumptions (e.g., A-working,
A-faulted). When using the conflict set algorithm, contradictions detected by the diagnostic
problem solver are used to create the conflict sets. Using either algorithm, further constraint
propagation is avoided when the sets of supports for the consumer indicate a contradiction in
all time intervals. An empty assumption history is used to indicate this situation.

Since a consumer's assumption history may change when the assumption history of an
antecedent changes, a consumer with an empty assumption history may subsequently have one.
Only consumers with non-empty assumption histories will be processed by the constraint
propagator.
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6.4 SCHEDULING CONSUMERS

Consumers are scheduled for processing based on the sets of supports within their assumption
histories, which depends on the diagnostic algorithm in use. Since the conflict set algorithm only
considers working mode behavior, the task of scheduling consumers is straightforward. All
consumers except those which represent useless inferences must be processed, and they are
processed in breadth-first order to reduce the amount of updating.

When using the minimal envisionment algorithm, the consumer scheduling process is more
complex. Once consumers have been created, they are prioritized by a consumer scheduler in
order of their weights. A consumer's weight is equal to the lowest weight of the occurrences in its
assumption history. Consumers with a lower weight should be processed before those with a
higher weight. This requirement tends to minimize the amount of updating that needs to be done to
the assumption history of a datum. Consumers are indexed by their weight to facilitate this
processing.

The weight of a consumer does not necessarily remain constant. As more constraint
propagation takes place, this can cause TARMS to update an occurrence on the consumer’s
assumption history, which may cause a change in the weight of that consumer. As a consequence,
a consumer's priority could change significantly (e.g., a consumer which was previously blocked
or had a low priority could become high priority).

A contradiction consumer is assigned the contradiction weight. The contradiction weight is
equal to one plus the number of components in the circuit, which is the highest possible weight.
To block useless inferences, consumers that have this weigh* are never considered for processing.

By organizing the consumer schedule by weight, it is often possible to find the minimal
diagnostic hypotheses by making fewer inferences. Since the consumer scheduler not only orders
consumers according to weight, but also enforces a breath-first application of constraints,
higher-weight consumers that will add nothing to the minimal diagnosis are not processed.




SECTION 7

DIAGNOSING FAULTS USING MINIMAL ENVISIONMENT

As described in section 3, the Geffner/Pearl algorithm traces through the dependency graph
from an output value to identify the diagnostic hypotheses that are consistent with the observed
behavior of the circuit. To implement this algorithm in GMODS, TARMS is configured to
compute sets of supports which correspond precisely to these sets of diagnostic hypotheses.
Rather than tracing through the dependency graph after constraint propagation has taken place, the
sets of supports are cached during constraint propagation and updated as necessary. After forward
and back propagation has been completed, the sets of supports computed for each output value
represent the culmination of all of the evidence in the dependency graph. The sets of supports for
the output values consistent with the observations are, therefore, the diagnosti~ hypntheses which
explain the observed behavior of the circuit.

7.1 COMPUTING A DIAGNOSIS FOR A COMBINATIONAL CIRCUIT

A central function of TARMS is to combine the sets of supports associated with the
justifications to generate the overall sets of supports under which the datum is valid.

The justifications which can provide support to a particular datum may include both the
justifications for the datum itself, and the justifications for other consistent data at the state variable.
In particular, the justifications which support ? also support any other derived value (e.g., the
justifications for ? also support a 6 at the same state variable). In general, the consistency
relationship describes which justifications should be shared. For instance, the value ? is consistent
with an actual value (e.g., 6). Sets of supports for the actual value are based on the justification
for the actual value, the justification for the ?, or a combination of the two. When the data at the
state variable are of type tri-value vector, they form a partial order based on the consistency
relation. For example, the tri-value vectors (? 1 1 0) and (0 ? 1 0) are both consistent with
(0 1 1 0), but they are unrelated to each other. (? 7 ? ?) is consistent with all three values.

To illustrate the process of generating sets of supports for a datum, we will examine the steps
involved in generating the sets of supports for various nodes within the circuit of figure 12. Since
sets of supports can be generated independently for different intervals of time, we will only
consider the behavior of this circuit over one interval of time. (In this situation, since each history
will contain only one occurrence, we will refer to the sets of supports in this occurrence as the sets
of supports of datum or justification.)
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Figure 12. A Simple Multiplexer Circuit

In this simple multiplexer circuit, an inverter determines whether to transfer a signal from
either input C or input D to the two drivers. When the inverter is working, it simply outputs the
inverse of its input. It also has two fault modes: stuck-at-one and stuck-at-zero. The multiplexer
and the drivers each have two modes of operation: working and the default fault mode. When the
multiplexer is working, it transmits the value of the signal at the selected input port to the output
port. A signal of 0 at the input-select port will cause the value at C to be transferred to the output
port; otherwise, the value at D will be transferred. When the control port of either driver is 1 and
the driver is working, it transfers the value at its input port to its output port. In this scenario, the
inputs are A = 1, C = 6, and D =4 which should cause a 6 to be generated at both F and J.
However, the observations at the outputs are F=6 and J = 4.

The sets of supports for a datum are generated from the sets of supports associated with the
justifications for the datum. For example, using forward propagation we can infer a 6 at node E
with the justification:

[Justification: B =0, C = 6, multiplexer-working]

and we can infer a 4 at the same node with the justification:

{Justification: B = 1, D = 4, multiplexer-working]




Each justification will have sets of supports associated with it. In the first case, the two
assumptions that can support the antecedent datum B = 0 are inverter-stuck-at-zero and
inverter-working, and so the sets of supports associated with the first justification are:

((inverter-working, multiplexer-working)
(inverter-stuck-at-zero, multiplexer-working)).

Similarly, the sets of supports associated with the second justification are:
((inverter-stuck-at-one, multiplexer-working)).
It is also possible to infer the datum E = ?. It has the justifications:

{Justification: B =0, C = 6, multiplexer-faulted]
[Justification: B = 1, D = 4, multiplexer-faulted]

Since there is more than one justification the sets of supports for the datum E = ? are computed as
the union of the sets of supports for each justification:

((inverter-working, multiplexer-faulted)
(inverter-stuck-at-one, multiplexer-faulted)
(inverter-stuck-at-zero, multiplexer-faulted))

As noted earlier, the datum E = 7 is considered to be consistent with any other datum at E.
Therefore, the sets of supports for E = ? are also valid for E = 6 and E = 4. Their sets of supports
will include the sets of supports fromE = 7:

E=6:

((inverter-working, multiplexer-working)
(inverter-stuck-at-zero, multiplexer-working)
(inverter-working, multiplexer-faulted)
(inverter-stuck-at-one, multiplexer-faulted)
(inverter-stuck-at-zero, multiplexer-faulted))

E=4:

((inverter-stuck-at-one, multiplexer-working)
(inverter-working, multiplexer-faulted)
(inverter-stuck-at-one, multiplexer-faulted)
(inverter-stuck-at-zero, multiplexer-faulted))
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Forward propagation continues by generating a 6 at the outputs of the drivers. The
justifications are [Justification: E = 6, G = 1, driverl-working] and [Justification: E=6,H=1,
driver2-working] respectively. Lastly, we can generate a ? at outputs of the drivers. The
justifications for F = ? are [Justification: E = 6, G = 1, driverl-faulted], [Justification: E =4,

G = 1, driverl-faulted], [Justification: E = ?, G = 1, driverl-working] and [Justification: E =?,
G =1, driver]-faulted). Similar justifications exist for J = 2.

Based on these justifications, the sets of supports for F = 6 are:

((inverter-working, multiplexer-working, driverl-working)
(inverter-stuck-at-zero, multiplexer-working, driverl-working)
(inverter-working, multiplexer-faulted, driverl-working)
(inverter-stuck-at-one, multiplexer-faulted, driverl-working)
(inverter-stuck-at-zero, multiplexer-faulted, driverl-working)
(inverter-working, multiplexer-working, driverl-faulted)
(inverter-stuck-at-one, multiplexer-working, driverl-faulted)
(inverter-stuck-at-zero, multiplexer-working, driverl-faulted)
(inverter-working, multiplexer-faulted, driver]-faulted)
(inverter-stuck-at-one, multiplexer-faulted, driver1-faulted)
(inverter-stuck-at-zero, multiplexer-faulted, driverl-faulted))

We will refer to the collection of the possible sets of supports for a datum as its explanation.
An explanation is a disjunction of sets of support. For example, if a 6 was observed at node F in
the example above, then one of the sets of supports listed in the explanation for the datum F = 6
must correspond to the actual state of the components upstream from F.

Generating the sets of supports for a datum can be computationally expensive. Fortunately,
the cost of computing the sets of supports is reduced significantly by focusing on deriving the
"best"” sets of supports for a datum. These sets of supports are derived by choosing the best
justification for the datum from each pathway.

Since the GMODS diagnostic algorithm assumes that each fault mode is equally likely,
TARMS always chooses the justification that is based on the fewest number of fault mode
assumptions. This justification is referred to as the minimal justification. In the example above,
[Justification: B =0, C= 6, multiplexer-working] is the minimal justification for E = 6 along the
pathway from the multiplexer to node E, since it is based on the assumptions that both the
multiplexer and inverter are working. The other justification from that pathway is not minimal
since it is based on an assumption that the inverter is broken, and none of the justifications for
E = ? are minimal. Similarly, [Justification: G = 1, E = 6, driver-working] is selected from the
pathway from the driver. By selecting just the minimal justification from each pathway, the
following explanation can be derived for F = 6:
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((inverter-working, multiplexer-working, driverl-working)).

Thus, TARMS does not attempt to compute the complete explanation for a datum. Instead, it
derives a subset of the complete explanation that includes only those sets of supports which
assume that the fewest number of components have become faulted.

Of course, this above explanation does not make an assignment of a mode of operation to each
component in the circuit and as such is not yet a diagnostic hypothesis. In order to complete the
process we must perform back propagation. The value J = 4 must be back propagated through the
circuit to the other output. Once back propagation is finished each value at F will have the sets of
supports that contzin an assignment of a mode of operation for every component in the circuit.

The first step is to generate E = 4 using [Justification: J = 4, H = 1, driver-working] which is
valid under the sets of supports ((driver2-working)). The datum E = 4 is now supported by three
justifications: two justifications from the pathway from the multiplexer to node E (via E = ?), and
one justification from the pathway from the driver2 to node E. The datum E = ? is also now
supported by an additional justification [Justification: J = 6, H = 1, driver2-faulted], but on a
different pathway. The value E =4 is then forward propagated to F.

Additionally the sets of supports for F=6 and F = ? must be updated by TARMS. The
update is necessary because F = 6 depends upon E = 6 which now has evidence from the driver2
pathway viaE = 7.

When there is more than one pathway TARMS derives the minimal sets of supports for each
antecedent by taking the cross product of the minimal sets of supports of each pathway of the
antecedent.

Note that the constraint propagator is not invoked in this updating process. The sets of
supports from the same pathway as the direction of the inference must be excluded. Failure to
exclude these sets of supports would cause circular reasoning. For example, the evidence on the
pathway from driver2 is not used when updating the justifications used to derive values at J.

The minimal sets of supports for E =6 from the multiplexer pathway is ((inverter-working,
multiplexer-working)) and from the driver2 pathway (using E = ?) is ((driver2-faulted)).
Therefore, the sets of supports for [Justification: G = 1, E = 6, driver-working] are ((inverter-
working, multiplexer-working, driverl-working, driver2-faulted)).

This justification is the minimal one available for F = 6. Since its sets of supports have
changed, the sets of supports for F = 6 also change. F = 6 now has sets of supports which assign
a mode of operation to every component is the circuit. These sets of supports therefore represent
complete diagnostic hypotheses which can be returned by GMODS.
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Figure 13. The Processor Test Case without Feedback

7.2 COMPUTING A DIAGNOSIS FOR A SEQUENTIAL CIRCUIT

Consider the following diagnostic scenario for the simple processor dataflow path shown in
figure 13. A clock produces four pulses during each cycle. On the first clock pulse (time interval
(to, t1)), a 6 is loaded into the register bank and output to node A. During (tg, t4), a 2 is also input
on the MUX data port and is selected as the MUX output. Latch2 is load-enabled during (t;, t),
and the contents of the latch memory are continually output to node B. Since the ALU function
selected is addition, we expected to observe output values of MAR-output = 6 and MBR-output =
8 during (t3, t4). In this diagnostic scenario, however, the observed output values during (t3, t4)
are MAR-output = 4 and MBR-output = 8. In addition to using this scenario to explain how
GMODS can diagnose sequential circuits, will also show how the consumer scheduler is used by
the constraint propagator.

To diagnose this circuit, the first step is to forward propagate values from circuit inputs to
circuit outputs. To control this propagation, consumers are successively generated and processed




under the control of the consumer scheduler. For example, when a 6 is inferred at node A, the
following consumers are created:

Cl. Antecedents: latch_in = 6, clock = 1, latch2-working
Constraint: LATCH-READ
Temporal Method: Intersection

C2. Antecedents: latch_in = 6, clock = 1, latch2-faulted
Constraint: LATCH-FAULTED-1
Temporal Method: Intersection

C3. Antecedents: latch_in = 6, clock = 0, latch2-faulted
Constraint: LATCH-FAULTED-1
Temporal Method: Intersection

Consequent Constraint Temporal Value | Time Explanation
State Variable Method Interval
Latch-Input 6 (t1, 4) ((register-bank-workin
Latch-Input ? (g t4) ((register-bank-faulted))
Latch-memory Latchread Intersection 6 (11, t2) ((register-bank-working,
latch2-working))
Transition Latch-event Event T (12, 12) Always-true
Variable
Latch-memory Latch-transition Transition 6 (t2, 13) ((register-bank-working,
latch2-working))
Latch-persistence | Persistence 6 [(t2,t4) {(register-bank-working,
latch2-working))
Latch-Output Latch-out Intersection 6 |(t1,4) ((register-bank-working,
(Node B) latch2-working))
Latch-memory Faulted-1 Normal ? (to, t4) ((register-bank-faulted,
latch2-working)
(register-bank-working,
latch2-faulted))
Latch-Output Faulted-2 Normal 7 |(to, 1) ((register-bank-working,
(Node B) latch2-faulted))

Table 1. Inferences Made by Propagating a 6 through Latch2
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Assumption histories are derived for each consumer, and the consumers are scheduled. When
Cl is processed, a 6 is inferred for the latch memory. Since this is the first time a 6 is derived, the
assumption history for the datum latch-memory = 6 is the sam~ as the justification history. This 6
causes a consumer to be created which subsequently infers a 6 at node B on the pathway from
Latch2 during (t1, t3) with the explanation ((register-bank-working, latch2-working)). Once a 6 is
derived at the internal memory of Latch2, and the values for the control signals have been
propagated, new consumers are created that process the event, transition, and persistence
constraints as described in section 5.3.

When C2 and C3 are processed, a ? is derived with an assumption history which contains a
minimal occurrence for the time interval (t1, t2) with the explanation ((register-bank-v. orking,
latch2-faulted)).

As shown in table 1, ? may also be inferred at the input to Latch2. The assumption history for
this value would contain one minimal occurrence which is valid during (tp, t4) with the explanation
((register-bank-faulted)). Given this antecedent, the following consumers are created:

C4. Antecedents: latch_in = ?, latch2-working
Constraint: LATCH-FAULTED-1
Temporal Method: Intersection

CS. Antecedents: latch_in = ?, latch2-faulted
Constraint: LATCH-FAULTED-1
Temporal Method: Intersection

When these consumers are processed, two new justifications are added to support the ? at the
internal memory of Latch2. C4 causes an assumption history to be derived with an occurrence
with a weight of 1 during (tg, t4) with the explanation ((register-bank-faulted, latch2-working)).
The assumption history for C5 contains a single occurrence with a weight of 2, which is valid
during (tp, t4) with the explanation ((register-bank-faulted, latch2-faulted)).

Since multiple justifications support a value of ? at the internal memory of Latch2, the
assumption history for ? must be updated with each new consumer processed. When C4 is
processed, the assumption history is updated. The minimal occurrence for ? during (tp, t4) has an
explanation of:

((register-bank-working, latch2-faulted)
(register-bank-faulted, latch2-working)).

Thus, both a 6 and ? are inferred at the latch-memory. These values are then propagated to
node B. Afterward, the assumption history for a 6 at Node B on the pathway from Latch2 consists
of two minimal occurrences, one which is valid during (t, t;) under the explanation ((register-




bank-working, latch2-faulted)), and a second which is valid during (1, t4) under the explanation
((register-bank-working, latch2-faulted)).

The assumption history for ? on the pathway from Latch2 also consists of two minimal
occurrences, one which is valid during (tp, t;) with the explanation ((register-bank-working,
latch2-faulted)), and one which is valid during (t3, t4) with the explanation ((register-bank-
working, latch2-faulted) (register-bank-faulted, latch2-working)).

Propagating forward through the MAR, two possible values can be inferred at the output of
the MAR: 6 and ?. Since a 4 was observed at the output of the MAR, the only value consistent
with the observation of a 4 during (t3, t4) is 7. The explanation ior a ? during (t3, t4) is:

((register-bank-working, latch2-working, MAR-faulted)
(register-bank-faulted, latch2-working, MAR-working)
(register-bank-working, latch2-faulted, MAR-working))

Back propagation completes the diagnosis by combining evidence derived from all paths
through the circuit. GMODS will back propagate from the MBR, through the Shifter and the
ALU, to infer a 6 for node B (on the pathway from the ALU). This 6 has an assumption history
that includes one occurrence which is valid during (t3, t4) with the explanation:

((ALU-working, Shifter-working, MBR-working, MUX-working)).

_ We then update the consequents of the 6 by updating the values inferred for the MAR-
memory. One of these consequents is ? in the MAR-memory. The minimal occurrence for a ? in
the MAR-memory has an antecedent of 6, and is based on the MAR being faulted. We update the
assumption history at this ? by combining the evidence from the two pathways, and we obtain a ?
with an assumption history containing one occurrence which is valid during (t3, t4) with the
explanation:

((register-bank-working, latch2-working, MUX-working, ALU-working,
shifter-working, MBR-working, MAR -faulted)).

This is the minimal occurrence for ? at the MAR-output. Any other occurrence that supports ?
implies a double fault, and thus is not minimal.

We obtain the diagnosis by accessing the explanations for the predicted values which are
consistent with the observed value during the observed time interval. In this case, the ? is the only
predicted value consistent with the observed value of 4. Since the 4 was observed during (13, 1),
the diagnosis corresponds to the explanation for ? during (t3, t4), namely MAR-faulted.
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Figure 14. Highlighting Reconvergent Fanout in the Processor Circuit

7.3 HANDLING RECONVERGENT FANOUT

Reconvergent fanout occurs when divergent paths through a circuit reconverge at a component
downstream. For example, in the part of the processor circuit shown in figure 14, the paths from
the register bank reconverge at the ALU output (node C). When a circuit contains reconvergent
fanout, the minimal sets of supports for any given antecedent may include assumptions that
contradict the minimal sets of supports of another antecedent. If the basic minimal envisionment
algorithm was used, it would lead to an incomplete set of diagnostic hypotheses. In the example,
data at the inputs of the ALU could depend on contradictory assumptions register-bank-working
and register-bank-faulted.

To illustrate this idea in more detail, consider the following scenario. The inputs to the circuit
are the same as in section 7.2, but the output at the MAR is 4 and the output at the MBR is 7. The
following justification generates a ? at node C:




J1. Antecedents: ALU-working, MUX-output = ?, Latch2-output =4
Constraint: ALU-ADD
Temporal Method: Intersection
Evidence at tine interval (t3, t4) for the antecedents:
MUX-output = ?
From MUX:
Weight: 1
Explanation: ((register-bank-working, latch1-working, MUX-faulted))
Latch2-output =4
From Latch2:
Weight: 1
Explanation: ((register-bank-working, latch2-faulted)
(register-bank-faulted, latch2-working))
From MAR:
Weighi: 0
Explanation: (MAR-working))

The sets of supports for Latch2-output = 4 are based on evidence from two pathways ~ the
pathway from Latch2 and the pathway from the MAR. The set of supports from the MAR is
((MAR-working)) due to the back propagation of the 4 observed at the output of the MAR. Since
a 4 was not generated on the pathway from Latch2, the evidence from ? is used — which is
((register-bank-working, latch2-faulted), (register-bank-faulted, latch2-working)). The set of
supports for the MAX-output = ? are ((MUX-faulted, latch1-working, register-bank-working)).

The sets of supports for this justification during (t3, t4) are ((register-bank-working,
latch2-faulted, MAR-working, MUX-faulted, latch1-working), (register-bank-faulted, latch2-
working, MAR-working, MUX-faulted, latch1-working, register-bank-working)). The second
set contains a co:itradiction, so it is eliminated, yielding ((Reg-Bank-working, Latch2-faulted,
MAR-working, MUX-faulted, Latch-1 working)). This set of supports has a weight of 2.

However, this is not the complete minimal set of supports for the justification during (t3, t4).
There is another set, (Reg-Bank-faulted, Latch2-working, MAR-working, MUX-fauited, Latch-1
working), which also has a weight of 2. The problem arises because the evidence that would be
used to produce this set of supports is based on non-minimal evidence for MUX-output = ?2.

This suggests that the process of generating sets of supports for a datum at a node with
reconvergent fanout should not be based solely on the minimal occurrences of each antecedent.
The basic algorithm can be extended so that it backtracks to less minimal sets of supports of one or
more of the antecedents. There may be other non-minimal sets of supports for antecedents that
would lead to a resultant sets of support that are minimal and not contradictory.
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For instance, ((MUX-faulted, Reg-Bank-faulted, Latch1-working), (MUX-faulted,
Reg-Bank-working, Latch2-faulted)) is a less minimal set of supports of MUX-output = ?. By
using these sets of supports, TARMS can generate the other set of supports that has a weight
of 2.5

The extended algorithm requires TARMS to access all combinations of sets of supports for the
antecedents which could yield the minimal weight for the consistent occurrence. Using the basic
algorithm, the expected weight for the consequent's sets of supports is the sum of the weights of
the antecedents' sets of supports. The weight of the resultant sets of supports can never be less
than the maximum of the antecedents’ occurrence weights, but if an antecedent's sets of supports
contain the same fault assumptions, the weight of the resultant sets of supports will be less than the
sum. To determine which sets of supports are actually minimal, all resultant sets of supports
which could have that weight must be calculated. This is done using the following algorithm:

Step 1. Given the n assumption histories of the antecedents, determine the time intervals for the
occurrences of the history for the consumer/justification.

Step 2. Iterate for each time interval generated in Step 1:
Step 2A. Iterate from i = O to the contradiction weight,

a. Find all occurrences of the antecedents whose combinations of weights could
yield resultant sets of supports of weight i

b. Compute the sets of supports for each combination.

c. If all the resultant sets of supports are contradictions,
then go to Step 2A and continue with next i

d. If there are some resultant sets of supports of weight i that are non-contradictory,
then they are the minimal consistent sets of supports for this time interval, so go
to 2 and do the next time interval

e. If there are sets of supports with higher weights, save the information, and go to
Step 2A. These will be added later to the sets of supports found (if any) when the
algorithm gets to the higher weight

3 No sets of supports are generated which include MUX-working, because if the MUX is working in this scenario, it
always reads from the input port and evidence from Letchl is not included.
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Figure 15. The Processor Test Case with Feedback

7.4 HANDLING FEEDBACK

This extension for handling reconvergent fanout is not sufficient for circuits with feedback,
due to a cycling effect that occurs during constraint propagation. A consumer is normally
processed when the antecedents have any suppor, either for the actual antecedent value or for the
consistent values. Since ? is consistent with everything, actual values can always receive support
from ?. In cases of feedback, the cycling or “ringing” that can result will enumerate all the possible
values for ?. This cycling is prevented by limiting the constraint propagator to process consumers
only when there is evidence for at least one actual antecedent value. Of course, when the
antecedent value is 7, the consumer is processed if there is support for ?.
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To illustrate the effects of this cycling problem, consider the circuit in figure 15. Again, we
assumne that each clock cycle consists of four clock pulses, and we will run the diagnostic scenario
over two clock cycles. The scenario is similar to the one from section 7.2. A 6 is input into the
MUX during (tg, t4) and a 2 is input during (t4, tg). From (tg, t4), the ALU performs the identity
function, and from (t4, tg), addition is selected. The Register Bank is load enabled during (tg, t1)
and output enabled to Node B during (ts, tg). Latch2 is load enabled during (t1, t2) and (ts, te).
The expected outputs during (t7, tg) are a 6 at the MAR output and an 8 at the MBR output.

When the circuit is working correctly, it is possible to generate an 8 at the input to the register
bank during (t4, tg). The default failure behavior of the shifter can be used to generate a ? at the
same node. The ? is valid during the time interval (tg, tg). Since ? is consistent with 8, the
evidence for 8 is updated to include evidence from ?, making the 8 valid during (tg, t4). It is
therefore possible to process the consumer [reg-bank-input = 8, clock = 1, register-bank-
working]. As propagation continues, a 10 will be generated at the input to the register bank (by
adding 2 to the 8). For the same reason as above, this 10 will be propagated through the register
bank and eventually used to generate a 12 (by adding 2 to the 10). Nothing in the basic algorithm
will stop this process from continuing as it tries to enumerate all the possible values for 7.

The enhanced algorithm avoids processing the consumer which loads the 8 into the register
bank. The 8 is valid between (tg, t;) only through consistent evidence from the ?. If the algorithm
ignores that evidence, then there is no intersection between the load-enable signal and the 8. Asa
result, the consumer will have an empty assumption history and will not be processed, and the
unwanted cycling is prevented. At the same time, the evidence is still complete — any evidence that
would be generated by propagating the 8 is generated when propagating the ? explicitly.
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SECTION 8

DIAGNOSING FAULTS USING CONFLICT SETS

8.1 COMBINING SETS OF SUPPORTS

When using the conflict set algorithm in GMODS, the only consumers created are those that
use the working assumption for the component; since no fault mode assumptions are propagated,
every occurrence is of the same weight and consistent evidence from ? does not need to be taken
into account. The TARMS method for determining the "best" sets of supports within each
occurrence is also based on the use of parsimony rather than minimality.

Load
enbl

6: ({{Reg_bank, Latch2}}, [t1, 14))

LATCH2

2: ({{MUX}}. [t0. t4]) 6. ({{MAR}}, [t3. 14))

Clock

MAR |load
Enbl

Figure 16. A Circuit Fragment

For example, assume that B = 6 and node A = 2 in figure 16. Using the addition constraint
for the ALU, we can infer an 8 at node C, and we then need to determine the history for C=8. As
mentioned earlier, the first step in this process is to determine the history of all of the antecedents
for the inference (A = 2) + (B = 6) => (C = 8). Since A = 2 has only one pathway, the history
contributed by this antecedent is simply the history for that pathway, {((MUX-working)),

(to. t4)}. The datum B = 6 has two pathways, one from Latch2 and one from the MAR. The
histories from each of these pathways must be combined into a single history for B = 6 that has
occurrences for (t1, t3) and (t3, t4). The resulting sets of supports of the occurrence for (t3, t4)
depends on the diagnostic algorithm used. When using minimal envisionment, the resulting sets of
supports are created by combining the minimal sets of supports from each pathway using the cross




product operation tc produce ((Reg-bank-working, Latch2-working, MAR-working)). When
using the conflict set algorithm, the sets of supports from each justification are kept separate,
irrespective of pathway. The sets of supports are combined using the union operator, and then
non-parsimonious sets are pruned, yielding ((Reg-bank-working, Latch2-working) (MAR-
working)). Since there is only one justification for the time interval (ti, t3), both algorithms
(concidentally) compute ((Reg-bank-working, Latch2-working)) for this time interval.

To compute the justification history for the inference (A = 2) + (B = 6) => (C = 8), the sets of
supports contributed by each antecedent must then be combined for each relevant time interval. As
in the minimal envisionment algorithm, the cross product operation is used. For the conflict set
algorithm, however, non-parsimonious sets of supports must be pruned. For example, using the
minimal envisionment algorithm, the result for (11, t3) would be:

((Reg-bank-working, ALU-working, MUX-working, MAR-working, Latch2-working))
For the conflict set algorithm, the result would be:

((Reg-bank-working, ALU-working, MUX-working, Latch2-working)
(Reg-bank-working, ALU-working, MAR-working))

To compute the datum history for C = 8 using the conflict set algorithm, the appropriate sets
of supports for each time interval are obtained from the justification histories and combined using
the union operation. Non-parsimonious sets of supports are pruned.

8.2 COMPUTING THE DIAGNOSIS

When the occurrences for different values derived for a state variable overlap in time, a
conflict has occurred. The sets of supports for the overlapping occurrences are combined using
cross product operations to produce conflict sets. The most parsimonious conflict sets are
maintained within a conflict set database. After constraint propagation has been completed and the
diagnostic problem solver has found all of the conflicts, the diagnosis is computed from the
conflict set database in one of two ways. If there is an intersection between the conflict sets, those
components represent the possible single fault diagnoses. (There may be other parsimonious
diagnoses consisting of multiple faults which will not be reported.) If no single faults can account
for the discrepancy, or if a more complete diagnosis is desired, a parsimonious diagnosis can be
computed by taking successive cross-products of the conflict sets.

In the following example, we will illustrate the use of the conflict set algorithm to diagnose a

sequential circuit. Consider the following scenario for the circuit in figure 17. Values are clocked
through the circuit over a four clock pulse cycle, and we will run the circuit for two cycles. A 6 is
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input into the MUX during (tg, t4) and a 2 is input to the MUX during (t4, tg). The ALU performs
identity from (tg, t4) and performs addition from (t4, tg). The Register Bank is load enabled during
(t3, t4) and output enabled to Node B during (ts, tg). Latch2 is load enabled during (t1, t2) and
during (ts, tg). The expected outputs during (t7, tg) are a value of a 6 at the MAR output and a
value of 8 at the MBR output. However, we observe that the circuit is faulted; although the

expected result of 8 is observed at the MBR output, a discrepant value of 4 is observed at the MAR
output.

Clock . Write addr
REGISTER Read A addr
load | pBANK Read B addr
enbl
Load [ Load
el | | enbl
LATCH1 LATCH2
Data
|
Input
Select MUX 0
Function i \
Select ALU
(&
Function
Select SHIFTER
Load i 1 Clock
(28] MBR MAR L load
WA T v ' Enbl
8(8) 4(6)

Figure 17. Processor Dataflow Path With Feedback
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By forward propagation from the inputs, 6 is inferred for the MAR output. Since a 4 was
observed, a contradiction is detected and the conflict set (Register_bank, Latch2, MAR) is
generated. Since no other conflict sets are found during forward propagation, an initial diagnosis
of a single fault can be obtained with the Register Bank, Latch2, and the MAR as diagnostic
hypotheses.

The process of back propagating information among the outputs completes the diagnosis by
combining evidence derived from all paths through the circuit. In this example, we can back
propagate from the MBR, through the Shifter and the ALU, to infer a 6 at node B on the pathway
from the ALU. The assumption history for this 6 includes one occurrence which is valid during
(t7, tg) with the sets of supports:

(ALU, Shifter, MBR, MUX)

We then update the consequents of the 6 by updating the values obtained for MAR-memory
using forward propagation. We update the assumption history of the 6 at node B by combining the
evidence from the two pathways and then propagate this information to the MAR-output. This
gives us another conflict of values at the output of the MAR. In addition to the original conflict set
of (Register_bank, Latch2, MAR), we find a second conflict set (ALU, Shifter, MBR, MUX,
MAR). An initial diagnosis of MAR is obtained by taking the intersection of the two conflict sets.
A more complete diagnosis can be found by computing the cross product of the two conflict sets
and then pruning all but the most parsimonious diagnoses to obtain:

((Register_bank, ALU) (Register_bank, Shifter) (Register_bank, MBR)

(Register_bank, MUX) (Latch2, ALU) (Latch2, Shifter) (Latch2, MBR)
(Latch2, MUX) (MAR))
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SECTION 9

COMPARISION OF THE GMODS ALGORITHMS

By implementing the conflict set and minimal envisionment algorithms using the GMODS
framework, we have demonstrated the capability of each algorithm to diagnose sequential circuits.
In this section, we will evaluate their relative effectiveness in terms of processing performance,
fault coverage, and plausibility.

9.1 PROCESSING PERFORMANCE
The processing required to implement each algorithm has the following steps in common:

« Forward propagate inputs through the circuit to obtain an initial diagnosis.

» Back propagate observed output values to refine the diagnosis.

« Maintain sets of supports to account for discrepancies between the observed and inferred
values.

The computation required to produce a final diagnosis, however, depends upon the diagnostic
algorithm employed. The minimal envisionment algorithm requires no additional processing; the
sets of supports for the predicted output values consistent with the observations are the minimal
diagnoses for the circuit. The conflict set algorithm does require additional computation —
interesection operations are used to produce single fault diagnoses, and expensive cross product
operations are necessary to produce more general parsimonious diagnoses. Situations can arise
where a highly interconnected circuit topology with limited observability causes considerable
ambiguity; in such cases the numbers and sizes of the conflict sets can become very large and the
necessary cross product operations can become prohibitively expensive.

On the other hand, since the conflict set algorithm reasons about contradictions among the
working behaviors of circuit components, it does not need to consider the effects of the default
fault mode. This results in two major efficiencies when compared to the minimal envisionment
algorithm. First, since ? is not generated, no consistency checking is required and much less
updating takes place. Second, there is no need to retract commitments in circuits with reconvergent
fanout. Since all occurrences are of the same weight and are equally valid, there are no
non-minimal sets of supports and backtracking is unnecessary.

To provide a quantitative evaluation of the performance differences between the two diagnostic
algorithms, we defined the following performance metrics:
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1. Conflict Set Algorithm:

PROCESSING

CLOCK  PROCESSING CONSUMERS JUSTIFICATIONS  TIME
INTERVALS IIME PROCESSED UPDATED ANTERVALS

4 9.75 37 171 244

8 13.00 70 385 1.63

16 24.75 116 649 1.55

24 40.25 162 926 1.68

32 58.00 208 1206 1.81

40 75.75 254 1484 1.89

2. Minimal Envisionment Algorithm:

PROCESSING

CLOCK  PROCESSING CONSUMERS JUSTIFICATIONS TIME
INIERVALS IIME PROCESSED UPDATED ANIERVALS

4 37.25 86 433 9.31

8 141.75 204 2516 17.72

» The observed processing time per interval. This metric is computed simply by dividing the

recorded processing time by the number of clock intervals.

» The number of consumers processed per interval. Since processing consumers is the
dominant and most expensive constraint propagation task, this metric measures the
performance of the constraint propagator as a function of the number of clock intervals.

+ The number of justifications updated per interval. The update-justification function includes
(a) creating or updating the assumption history of the justification, and then (b) creating or
updating the assumption history of the consequent value. Since this is the most expensive
TARMS activity, this metric was chosen to measure the performance of TARMS.

In addition, since the Conflict Set algorithm can exhibit computational problems depending on
the growth of the conflict set database, the number of conflict sets generated as a function of the
number of clock intervals is also important for evaluating the Conflict Set algorithm.

GMODS performance statistics are shown in table 2. These statistics were generated by
running GMODS on a Sun Sparcstation using the processor test case illustrated in sections 7 and 8.
All of the statistics are averages from statistics recorded using four different diagnostic scenarios.
The first column indicates the number of clock intervals simulated by the diagnostic problem

Table 2. GMODS Performance Statistics

CONSUMERS

PROCESSED

ANTERVALS
9.25
8.75
7.25
6.75
6.50
6.35

CONSUMERS
PROCESSED

21.56
25.47

JUSTIFICATIONS
UPDATED
ANTERVALS
42.75
48.16
40.58
38.59
37.68
37.09

JUSTIFICATIONS
UPDATED
ANTERVALS
108.13
314.50




solver. The second column indicates the processing time required to produce a diagnosis (in
seconds). The third and fourth columns indicate the total number of consumers processed and the
total number of justifications updated. The remaining columns correspond to the metrics above.

For the conflict set algorithm, these figures show that the numbers of consumers processed
and justifications updated per interval decreased as the number of intervals increased. This is partly
a consequence of using TARMS - because inferences are recorded by TARMS, fewer new
inferences need to be made with each successive interval. Therefore, fewer consumers need to be
processed and fewer justifications need to be updated. In addition, amount of processing required
per interval is relatively constant. Initialization consumes a disproportionate amount of time, but
this effect dissipates as the number of intervals increases. Subsequent increases in this metric are
caused by additional processing required to access the assumption histories as they increase in size.

When running the conflict set algorithm, the number of conflict sets reached a stable value as
the number of clock intervals increased. More generally, when a state variable is assigned
conflicting values during one clock interval, it will tend to be assigned conflicting values during
other intervals. The number of conflict sets therefore tends to be relatively independent of the
number of clock intervals; it depends more directly upon the number of cor*ponents and upon the
topology of the circuit. When the size of the conflict set database docs become large, single fault
diagnoscs can still be computed efficiently using intersection operations. On the other hand, the
performance metrics for the minimal envisionment increased rapidly as a function of the number of
clock intervals in all of the diagnostic scenarios we examined.

Since the performance metrics show that the performance of the conflict set algorithm is a
stable function of the number of clock intervals, GMODS is ready for application to a more
complex digital sequential circuit. Nonetheless, additional performance improvements are desirable
to reason over larger number of time intervals. The processing time to produce a diagnosis could
be reduced very substantially via the following techniques:

* Use different data structures for assumption histories. A linear search is currently required
to extract evidence from an assumption history. A different data structure (e.g., an array)
could provide more efficient access to the histories.

 Avoid unnecessary updating. Process inputs and outputs and propagate to reduce the
number of updates that need to be made to assumption histories. Use symbolic
representations of sequences (clock signals can be encoded as a repeating sequence of
values, and maintaining a single assumption history for a sequence is much more efficient
than maintaining histories for each value in the sequence). During back propagation, avoid
generating evidence for time intervals that are not directly related to the observations.
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» Remove generalities that permit GMODS to run both the Conflict Set and Minimal
Envisionment algorithms.

9.2 FAULT COVERAGE

The two algorithms can also be compared oa the basis of fault coverage. The conflict set
algorithm generates the most parsimonious diagnoses for the circuit behavior. These explanations
are actually a compact way to represent the full set of possible diagnoses, since all diagnoses
subsumed by the parsimonious ones are also valid. (See [7] for a more detailed discussion of the
implications of reporting parsimonious diagnoses.) When intersection operations are used, all of
the parsimonious diagnoses may not be generated, and we cannot view the single fault diagnoses
as a representation of the full set of valid diagnoses. However, single faults are considerably more
common, and the algorithm for determining single fault diagnoses is considerably more efficient.

The minimal envisionment algorithm is based on the premises that all faults are equally likely
and that the diagnoses containing a minimal number of fault assumptions are the most useful subset
of the possible diagnoses. Unlike a parsimonious set of diagnoses, this set is not a compact
represemation of the full set of valid diagnoses. However, if new observations were used to rule
out the currently minimal set, the necessary information is maintained within TARMS to efficiently
calculate a new minimal set of diagnoses.

9.3 PLAUSIBILITY

The use of fault modes to refine the diagnosis has long been seen as desirable [6, 10, 18], and
MITRE's first extension to the conflict set algorithm (GMODS-87) included fault modes [11].
However, this produced much larger sets of supports, more conflict sets, and longer processing
times to produce parsimonious diagnosis. In the current GMODS conflict set algorithm, we have
avoided using fault modes to reduce the number of conflicts to a more reasonable level

The minimal envisionment algorithm must use fault modes to operate. In most situations, this
involves only the default fault mode. The problem with the default fault modes is that they provide
evidence for 7. Since such evidence also supports other values at the same state variable, the
inclusion of fault modes creates a need for much more updating.

Other model-based diagnostic algorithms have used component fault probabilities to improve
performance and improve plausibility. For example, Sherlock [6] demonstrates the feasibility of
including fault modes to diagnose combinational circuits by using fault probabilities to explore
likely diagnoses. It is able to compute the most likely diagnosis in five seconds for a
combinational circuit with over 2000 components.




SECTION 10

CONCLUSIONS

The GMODS approach contributes to the state-of-the-art in model-based diagnostic reasoning
in a number of ways: the GMODS model can be constructed directly from industry-standard
VHDL design descriptions, GMODS is able to reason over multiple intervals of time within digital
sequential circuits, the diagnostic problem solver is able to diagnose single and multiple faults with
linear processing performance (in most cases) using the conflict set algorithm.

10.1 HARDWARE MODELING

The GMODS model used to support diagnostic reasoning can be constructed automatically
from industry-standard VHDL design models. GMODS thus demonstrates the potential of
model-based diagnostic reasoning to serve as an enabling technology to support concurrent
engineering of the functional and diagnostic elements of the system design. When standard design
models are used as a basis for diagnostic reasoning, they can be analyzed as an integral part of the
design process to evaluate system performance in the presence of faults, and to evaluate the fault
coverage provided by the diagnostics elements of the design. The design can then be improved
incrementally as necessary, and after the system is fielded, the design model can be used to support
field and depot-level troubleshooting activities.

Additional work is required to extend GMODS to accept standard design models that represent
broad classes of realistic system designs. Presently, GMODS can use VHDL dataflow
representations of behavior to diagnose faults at the register-transfer level within digital circuits.
These register-transfer models were selected to develop the basic techniques for reasoning over
time within sequential circuits. However, components such as registers and latches are among the
most simple of the replaceable electronics components of modem systems, and before GMODS
will be of utility to the engineering community, it will need to be able to represent and reason about
more complex digital devices. To extend GMODS to diagnose faults within real circuit boards and
systems, we must also generalize the VHDL subset supported by GMODS to accommodate the
process- “riented behavioral models typically used to describe complex device behaviors in VHDL.
It is po .sible that VHDL subsets defined to support design synthesis and performance modeling
will form a suitable basis for a broader VHDL subset for diagnosis.

The internal GMODS representation language provides an additional contribution to hardware
modeling — it can accommodate representations of analog and digital behaviors within a single
declarative framework adequate to support diagnosis. in GMODS, the constraint and predicate
constructs can be utilized to describe analog behavior where there is not always an identifiable
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direction of information flow. Indeed, predicates generally imply no causal direction; the intended
causal direction is specified by a separate attribute within each constraint. To facilitate analog
modeling, GMODS also permits multiple state variables to be associated with a node (e.g., the
electrical currents flowing to a common node), and the GMODS constraint language permits node
and loop equations to be attached directly to nodes within the model. Consequently, both analog
and digital component models could potentially be translated into GMODS to support diagnosis of
mixed analog/digital systems.

10.2 REASON MAINTENANCE

TARMS serves as an enabling technology to permit diagnostic reasoning over multiple
intervals of time within sequential circuits. Unlike previous reason maintenance approaches which
incorporate temporal information by maintaining value histories, TARMS maintains assumption
histories for each value. A major benefit of using assumption histories is that existing data need
not be rederived whenever a new assumption is made. For example, 4 and 5 may serve as
antecedents to an addition constraint that is used to infer a 9, based on a combination of the sets of
supports obtained from the constraint and the antecedents. Since 4 plus 5 will always equal 9, this
inference does not need to be rederived when the sets of supports for the antecedents change — the
assumption history for the datum 9 will maintain the different sets of supports under which the 9 is
valid at various times. As additional information is propagated through the network over time, the
consumer architecture prevents existing inferences from being rederived, and TARMS updates the
relevant intervals in the assumption histories to reflect the new information.

TAFMS also supports reasoning about the behavior of components with memory. When a
value persists, it does not change, but the time intervals in which it is valid and its sets of support
can change significantly. The separation of value propagation and temporal behavior naturally
supports persistence. A value that persists does not need to be rederived for each time interval;
using the temporal reasoning mechanisms of TARMS, the different sets of supports “o: each time
interval are computed directly.

10.3 DIAGNOSTIC REASONING

GMODS has made significant progress toward satisfying the goals outlined within the
introduction. GMODS can provide thorough fault coverage since it is able to diagnose
unanticipated faults and multiple faults. When running the conflict set algorithm, GMODS is able
to meet the efficiency goal in most cases, and the conflict set algorithm appears to be well behaved
as a function of the number of time intervals. When using the minimal envisionment algorithm,
explicit fault modes can be incorporated into the model, and GMODS has the potential to avoid
generating implausible diagnostic hypothesis. Unfortunately, even after exploiting the consumer
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architecture to avoid unnecessary inferences, the minimal envisionment algorithm has shown
unacceptable processing performance when reasoning over time within sequential circuits.

Since GMODS is able to reason about behavior over time within sequential circuits by using
the conflict set algorithm, it has made a significant advance toward "scaling up" to address realistic
applications. More work is clearly required to adapt GMODS to diagnose faults within realistic
electronics boards and systems. The appropriate next step is to identify a series of realistic digital
circuit boards of increasing complexity and to incrementally refine the GMODS approach as it is
applied to each successive board.
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